170-190° (bath temperature). The cooled mixture was poured on ice, diluted, and neutralized with excess barium carbonate. After digestion, filtration, and evaporation of the filtrate to dryness 144 g. (93%) of barium 4-ethyl-3,5-disulfobenzoate was obtained; p-toluidine salt⁹: m.p. 287-289° dec. (297-299° corr.).

Anal. Calcd. for C23H28O8N2S2: C, 52.5; H, 5.34; N, 5.34; neut. equiv., 174.9. Found: C, 52.2; H, 5.48; N, 5.22; neut. equiv.,10 174.6.

The sulfonyl chloride was obtained as white rods (from ligroin), m.p. 82-83°

Anal. Calcd. for C₉H₇O₅S₂Cl₃: S, 17.54. Found: S, 17.38. The sulfonamide was obtained as white crystals (from water), m.p. 269° dec. (rate of heating 1°/min.).

Anal. Calcd. for C₉H₁₃O₅S₂N₃: S, 20.87. Found: S, 20.97. 3.5-Disulfoterephthalic acid. A mixture of 5.00 g. (0.00187 mole) of barium 4-ethyl-3,5-disulfobenzoate and 30 ml. of fuming nitric acid (d, 1.5 g./ml.) was heated in a sealed tube (enclosed in an iron pipe) for 6.5 hr. at 170-184° (183-196° bath temperature). After evaporating excess nitric acid, 100 ml. of water was added with stirring. Barium sulfate was filtered off and the filtrate was neutralized by the addition of 2.3 g. of barium carbonate. The white, flocculent precipitate which formed in the hot solution was removed (2.3 g.) and was recrystallized from dilute hydrochloric acid, yielding glistening, translucent needles.

Anal. Calcd. for C16H6O20S4Ba3: Ba, 38.9. Found: Ba, 38.4.

p-Toluidine barium salt⁹:

Anal. Calcd. for C₃₀H₂₄O₂₀S₄N₂Ba₃: S, 10.1; neut. equiv., 636. Found: S, 10.2; neut. equiv., 10 641.

Alkali fusion. Barium 4-ethyl-3,5-disulfobenzoate (167 g.) was stirred into 516 g. of molten potassium hydroxide in a large copper beaker, and the mixture was kept at 260-290° for 2 hr. The melt was then poured into water, barium sulfite was filtered, and the filtrate was acidified with excess concentrated hydrochloric acid. The resulting brown precipitate (10 g., mainly hydroxyterephthalic acid and 4-ethyl-3hydroxybenzoic acid) was filtered and the filtrate was extracted with ether, yielding 36.7 g. of a tan solid.

Hydroxyterephthalic acid. The brown solid (10 g.) obtained on acidification of the melt was boiled with 100 ml. of water. The mixture was filtered, and the residue was recrystallized twice from aqueous methanol, yielding a white substance melting between 312° and 327° (with sublimation) depending on the rate of heating (reported¹¹ m.p. 327°). Anal. Caled. for C₈H₆O₈: Neut. equiv., 91.1. Found:

Neut. equiv., 91.7.

Dinitroderivative: m.p. 177-178° (reported¹² 178°)

Chromatography. The tan solid (36.7 g.) obtained from the ether extraction of the acidified melt was stirred with 367 ml. of water at 55° for 5 min., and the mixture was filtered. The filtrate was treated with 106 g. of salt, the resulting precipitate was filtered, and the filtrate was extracted with ether. A 6.5-g. portion of the material obtained by evaporation of the ether was dissolved in 30 ml. of hot water, mixed thoroughly with 75 g. of silicic acid, and covered with hexane. This mixture was ladled into a 92 cm. high (8 cm. I.D.) column packed with 1.6 kg. of silicic acid (100 mesh, containing 28.6% water) to a height of 65 cm., and covered with hexane. Elution was effected with mixtures of butanol in hexane, the percent of butanol (by volume) rising gradually from 1% to 4.5%. Fifteen-milliliter samples were collected at an average flow rate of 1.5 ml./min. Onemilliliter aliquots were titrated against 0.0025N alcoholic potassium hydroxide.

4-Ethyl-3-hydroxybenzoic acid. The first fraction obtained from the chromatography contained 0.46 g. of a substance, which after recrystallization from water melted at 169° and did not depress the melting point of an authentic specimen of 4-ethyl-3-hydroxybenzoic acid.18

3-Hydroxy-4-methylbenzoic acid (II). The second fraction obtained from the chromatography followed immediately after the separation of the first one, and contained 0.90 g. of a substance which crystallized from water in needles, m.p. 206-207° (reported¹⁴ 206-207°), and which did not

depress the melting point of an authentic specimen. Anal. Calcd. for $C_8H_8O_3$: C, 63.15; H, 5.30; neut. equiv., 152. Found: C, 63.00; H, 5.30¹⁶; neut. equiv., 155.

m-Hydroxybenzoic acid. The third fraction obtained from the chromatography did not appear until long (137 fractions) after the second one had separated, and contained 2.24 g. of a substance which melted at 199-200°, and did not lower the melting point of an authentic specimen of mhydroxybenzoic acid.

SYRACUSE UNIVERSITY

DEPARTMENT OF CHEMISTRY

(13) R. Sprenger, Ph.D. thesis, Syracuse University, 1946.

(14) A. N. Meldrum and W. H. Perkin, J. Chem. Soc., 93, 1420 (1908).

(15) Spang Microanalytical Laboratories, P.O. Box 1, Ann Arbor, Mich.

Derivatives of Fluorene. XIII. Formation of 9-Arylimino Compounds in the Presence of **Boron Trifluoride**

MURRAY E. TAYLOR AND T. LLOYD FLETCHER^{1,2}

Received June 27, 1960

In previous papers³ we reported use of several catalysts in the formation of 9-aryliminofluorenes. In a search for catalysts which, while highly effective, can be used under milder conditions, we have found that boron trifluoride, used as the diethyl etherate, effects condensation at lower temperatures than are necessary with zinc chloride and others.

Twenty-four azomethine derivatives of fluorene, mostly new, have been prepared in excellent yield, either in a suitable solvent or by fusion. The latter was resorted to when the substituted fluorenone was relatively insoluble. In Table I a few boron trifluoride catalyzed condensations are compared with fusions of the same starting materials in the presence of zinc chloride.

⁽⁹⁾ R. L. Shriner and R. C. Fuson, Identification of Organic Compounds, 3rd ed., John Wiley and Sons, Inc., New York (1940), p. 216. (10) A. G. Perkin and W. G. Sewell, J. Soc. Chem. Ind.,

^{42, 27}T (1923).

⁽¹¹⁾ M. Hauptschein, E. A. Nodiff and A. J. Saggiomo, J. Am. Chem. Soc., 76, 1053 (1954).

⁽¹²⁾ G. A. Burkhardt, Ber., 10, 1273 (1877).

SYRACUSE 10, N.Y.

⁽¹⁾ To whom communications regarding this paper should be addressed.

⁽²⁾ This work was supported in part by a research grant (C-1744) from the National Cancer Institute of the National Institutes of Health, Public Health Service.

⁽³⁾ M. E. Taylor and T. L. Fletcher, J. Org. Chem., 21, 523 (1956); M. E. Taylor and T. L. Fletcher, J. Am. Chem. Soc., 80, 2246 (1958).

ŦΑ	B	\mathbf{LE}	•	I

COMPARISON OF BORON	TRIFLUORIDE AND ZINC	CHLORIDE AS (CATALYSTS IN THE	FORMATION OF	ZOMETHINES

Compound	Catalyst	Time, min.	Temp.	Solvent ^a	Yield, %
N-(2,5-Dinitrofluorenylidene)-	BF:	10	125-130		90
<i>p</i> -toluidine	ZnCl ₂	45	165 - 175		92
N-(2-Nitrofluorenylidene)-	BF:	10	120-125		100
<i>p</i> -toluidine	ZnCl ₂	45	160-170		72
N-(2,4,7-Trinitrofluorenyl-	BF,	60	Reflux	Benzene	40
idene)-p-toluidine	BF3	120	Reflux	Benzene	100
· •	$ZnCl_2$	30	165-170		72
N-Fluorenylidene-p-fluoro-	BF:	19 (hr.)	25-30	Chloroform	100
aniline	BF:	48 (hr.)	25-30	Chloroform	100
	BF,	30	120-125		93
	$ZnCl_2$	60	170-175		87

• — indicates a fusion reaction. • 64% from initial filtration and an additional 34% by boiling down the chloroform. • 78% from initial filtration and 22% (see *).

In the solution method a small amount of absolute ethanol was usually added to solubilize the boron trifluoride-amine compound. After refluxing the reaction mixture the alcohol was boiled away, precipitating the addition compound which was removed by filtration. Further concentration led to recovery of the azomethine. In condensations with *m*-toluidine, the addition product with boron trifluoride was soluble in the solvents used and was recovered with the azomethine. Purification in these cases was accomplished by triturating the product with absolute ethanol, filtration, and washing with the same solvent. Recrystallization before removal of the amine complex gave a deteriorated product.

p-Chloroaniline and 2,4,7-trinitrofluorenone were allowed to stand for three days in chloroform with boron trifluoride etherate. A purple addition compound resulted which melted at $146-147^{\circ}$. Upon heating below 145° for a short while the substance lost weight, becoming colorless. The residue was 2,4,7-trinitrofluorenone. When the purple substance was refluxed in chloroform with boron fluoride, and a little alcohol added, the azomethine was obtained as red needles.

Tables II summarizes the experimental data.

EXPERIMENTAL⁴

Typical procedures used in preparing azomethines in the presence of boron trifluoride by fusion, in solution at room temperature and in refluxing solvents are illustrated by specific examples.

Preparation of N-fluorenylidene-p-chloroaniline in refluxing chloroform. A solution of 9.0 g. (0.05 mole) of fluorenone, 10.2 g. (0.08 mole) of p-chloroaniline and 1 ml. of boron fluoride etherate in 100 ml. of chloroform with a few ml.

of ethanol was refluxed for 15 min. The solution was concentrated to about 25 ml., yielding 14.5 g. (100%) of product, m.p. 145-148°. Recrystallization from chloroform-ethanol (1:3) gave yellow needles, m.p. 149.5-150.0°.

Preparation of N-(2,5-dinitrofluorenylidene)-p-toluidine by fusion. A mixture of 5.4 g. (0.02 mole) of 2,5-dinitrofluorenone (m.p. 243.5-244.5°), 4.3 g. (0.04 mole) of ptoluidine and 1 ml. of boron trifluoride etherate was fused at 125-130° for 10 min. with manual stirring. The product was dissolved in hot chloroform and filtered. The filtrate was concentrated to 50 ml. and 6.5 g. (90%) of red product crystallized, m.p. 201-203°. Recrystallization from acetone raised the m.p. to 202-203°.

Preparation of N-fluorenylidene-p-fluoroaniline at room temperature in chloroform. Boron trifluoride etherate (1.5 ml.) was added to a solution of 9.0 g. (0.05 mole) of fluorenone and 8.9 g. (0.08 mole) of freshly distilled p-fluoraniline in 10 ml. of chloroform at room temperature. The contents of the flask solidified. The solid was partially dissolved by adding 4 ml. of absolute ethanol and mixing. The flask was then stoppered and allowed to stand for 19 hr. A few milliliters of ethanol were then added and the product was collected by filtration and washed with ethanol yielding 8.8 g. (64%), m.p. 139-142°. Concentration of the filtrate to 20 ml. gave another 4.9 g. (36%) of product, m.p. 138-141°.

Preparation of the p-chloroaniline- $\pounds,4,7$ -trinitrofluorenone addition compound. A mixture of 7.9 g. (0.025 mole) of 2,4,7trinitrofluorenone (m.p. 173.5-174.5°), 5.1 g. (0.04 mole) of p-chloroaniline and 0.5 ml. of boron trifluoride etherate in 50 ml. of chloroform and 3 ml. of absolute ethanol stood at room temperature for 3 days. The mixture was then filtered and washed with absolute ethanol, yielding 10.7 g., m.p. 138-144° (taken rapidly). Recrystallization from chloroform-ethanol raised the m.p. to 146-147°.

Anal. Calcd. for C₁₉H₁₄ClN₄O₆: C, 52.02; H, 2.50; Cl, 8.08; N, 12.77. Found: C, 51.82; H, 2.43; Cl, 8.17; N, 12.53.

When this compound was heated for a short time below 145° , it became colorless, m.p. $171-173^{\circ}$ (mixture m.p. with authentic 2,4,7-trinitrofluorenone $171-173^{\circ}$).

Preparation of N-(2,4,7-trinitrofluorenylidene-p-chloroaniline from the addition compound. A solution of 9.4 g. of the addition compound in a minimum of hot chloroform with 4 ml. of absolute ethanol and 1 ml. of boron trifluoride etherate was refluxed for 7 hr. and cooled. A red product precipitated and was collected by filtration, 2 g., m.p. 217-220°. Crystallization from chloroform raised this m.p. to 231-231.5°.

DEPARTMENT OF SURGERY CHEMISTRY RESEARCH LABORATORY UNIVERSITY OF WASHINGTON SEATTLE 5, WASHINGTON

⁽⁴⁾ All melting points are corrected. Melting points below 300° were taken on a Fisher-Johns block; over 300°, they were taken in a capillary in an aluminum block. Some microanalyses were done by Dr. W. Manser, Herrliberg (Zch), Switzerland; some by the Schwarzkopf Micro-analytical Laboratory, Woodside 77, N. Y., and others by Drs. Weiler and Strauss, Oxford, England.

No.	Ketone	Time, Min.	Temp.	M.P.	Yield, %	Color and Form	Carb Calcd.	Carbon, % alcd. Found	Hydro, Calcd	Hydrogen, % Calcd Found	Hydrogen, % Caled. Found	$\mathop{\mathrm{Found}}_{\mathrm{Found}}$	Chlorine, % Calcd. Foun	ne, % Found
				FLUOREN	ALIDENE	FLUORENYLIDENE-p-TOLUIDINE COMPOUNDS	POUNDS							
	Fluorenone $(C)^{b}$	30	Reflux	$119.5 - 120.0^{\circ}$	97	Yellow needles	89.18	88.89	5.61	5.66	5.20	5.10		
• 67	2-Nitrofluorenone	10	120-125	192-1934	100	Orange	76.42	76.22	4.49	4.31	8.91	8.83		
1 01	2 5-Dinitrofluorenone	10	125-130	202-203	0 6	Red					11.70	11.61		
• -	9.7 Dinitzafliaranane	<u>چ</u>	120-125	245 5-246	2	Red needles	66.85	66 73	3.65	3.64	11 70	11 66		
# 14	9.4.7. Trinitrofinorenone	3 5	Reflix	225 5-226	9 2	Maroon hairs	00.00		00.0	10.0	13 86	13 86		
ი (2,4,7-1,1111001400140016		125-140	944-945	100	Vallour needlee	80.05	80 A5	ц 26	л Г	00.01 02.0	10.00 20 20		
0 r	2-Aceuannuonuorenoue 9-Renzamidofinorenone	3 4	120-125	228-228.5	00 1	Yellow	83.48	83.50	5.19	5,19	7.21	0.00 7.03		
-		2		, ,	1									
				FLUOREN	YLIDENE	FLUORENYLIDENE-m-TOLUIDINE COMPOUNDS	POUNDS							
x	Fluorenone (C)	45	Reflux	101.5-102	87	Yellow needles	89.18	89.11	5.61	5.62	5.20	5.03		
6	2-Nitrofluorenone	8	120-125	188 - 189	100	Yellow needles	76.42	76.32	4.49	4.44	8.91	8.94		
10	2.5-Dinitrofluorenone	10	120-125	210 - 210.5	82	Orange hairs	66.85	66.73	3.65	3.69	11.70	11.66		
2 =	2, 7-Dinitrofhorenone	15	115-125	233.5-234.5	67	Scarlet	66.85	66.76	3.65	3.66	11.70	11.69		
12	2.4 7-Trinitrofluorenone (B)	15	Reflux	182 - 183	67	Red	59.41	59.57	2.99	3.18	13.86	13.95		
1	2-Acetamidofluorenone	15	135-140	169-170	8	Yellow	80.95	80.95	5.56	5.61	8.58	8.74		
14	2-Benzamidofluorenone	8	125 - 130	188.5-189.5	37	Yellow	83.48	83.40	5.19	5.18	7.21	7.17		
				FLUOREI	INEGITA	FLUORENYLIDENE-p-ANISIDINE COMPOUNDS	POUNDS							
15	Fluorenone (C)	30	Reflux	135-136	100	Orange plates	84.18	83.98	5.30	5.08	4.91	5.05		
16	2-Nitrofluorenone	32	120-125	169 - 170	98	Orange plates	72.72	72.64	4.27	3.98	8.48	8.42		
17	2.5-Dinitrofluorenone	15	120-125	216.5 - 217.5	100	Maroon needles	64.00	64.05	3.49	3.62	11.20	11.10		
18	2.7-Dinitrofluorenone	20	Reflux	230.5 - 231.5	91	Red needles	64.00	63.97	3.49	3.61	11.20	11.05		
01	2.4.7-Trinitrofluorenone (B)	99	Reflux	230-231	67	Red hairs	57.15	57.23	2.88	2.95	13.33	13.32		
2 2 2	2-A cetamidofluorenone	8	135-140	227.5 - 228.5	%	Orange plates	77.17	76.74	5.30	5.10	8.18	7.90		
21	2-Benzamidofluorenone	8	125 - 130	227 - 229	100	Yellow					6.92	6.95		
				FLUOR	ENYLIDE	FLUORENYLIDENE-p-CHLOROANILINE COMPOUNDS	VE COMPO	UNDS						
7 7	Fluorenone (C)	15	Reflux	$149.5 - 150^{\prime}$	100	Yellow needles	78.74	78.67	4.18	4.33	4.83	4.64	12.24	11.95
23	2-Nitrofluorenone (T)	120	Reflux	228 - 229	82	Orange hairs	68.16	68.26	3.31	3.48	8.37	8.39		
24	2.5-Dinitrofluorenone	15	125-130	234-235	100	Red needles	60.09	60.31	2.77	2.65	11.09	10.87		
25	2.7-Dinitrofluorenone	କ୍ଷ	120-125	258-258.5	100	Orange needles	60.09	59.77	2.77	2.50	11.09	10.87	9.34	9.38
20	2.4.7-Trinitrofluorenone (T)	210	Reflux	231 - 231.5	72	Red needles	53.72	53.87	2.14	2.21	13.19	13.10	8.35	8.56
27	2-Acetamidofluorenone	8	115-120	228 - 229	95	Yellow needles	72.72	73.11	4.36	4.18	8.08	7.95		
8	2-Benzamidofluorenone	45	125-130	222.5 - 223.5	6 8	Yellow needles	76.38	75.86	4.19	4.20	6.85	6.95	8.67	9.13.

Ketones were prepared by methods listed. ' Reported m.p. 122.5-123', J. H. Billman and K. M. Tai, J. Org. Chem., 23, 536 (1958). ^d M. E. Taylor and T. L. Fletcher, J. Am. Chem. Soc., 80, 2246 (1958). ' Reported' m.p. 135-136'. J Reported' m.p. 147-147.5'. Products No. 7 and 16 were crystallized from acetonitrile, No. 8 from methanol, Nos. 9 and 24 from benzene, No. 12 from acetone, No. 13 from ethanol, No. 23 from chloro-form-acetonitrile, and the rest from chloroform or chloroform-ethanol.

942

=Z-

TABLE II. 9-ARTLIMINOLFLUORENE DERIVATIVES PREPARED WITH BF3AS A CATALYST^a